
http://www.smartaccessnewsletter.com 9Smart Access  May 2002

Smart Access

Microsoft Access Forms—
All Class
Garry Robinson 20002000 20022002

If object-oriented development seems foreign to you, it
shouldn’t. All forms are defined in class modules, and all
executing forms are objects. Garry Robinson shows how to
take advantage of this to create classy forms.

WHEN Access 97 came out, one of its hidden
features was that form objects were now
actually class modules. I was under-impressed.

Five years later, and guess what—it finally dawned on me
that I was using Access forms more and more as class
modules. This has gradually come about as my clients
started requiring more intuitive interfaces. This article
outlines ways that you can take advantage of class
module features that I’ve used over the past few years.
You’ll note as you read the article that I haven’t gone
really overboard on technicalities but instead have
concentrated on showing you ways to get even more
mileage out your most valuable forms.

My most-used trick
Whenever I add a control to a form that will open another
form in Access, I avoid using the Button Wizard as all the
error code that it generates irritates me. Instead, I make a
blank button by canceling the wizard. Then, as usual, I
find that I don’t quite remember the name of the form that
I want to open. So I’ll type the following code and hit the
space bar to show a list of forms (see Figure 1):

Docmd.openForm  form_

This list is actually all the forms in that database that
have code behind the form. These are all stored in your

database as class modules. And guess what—you can use
these modules as objects.

Back to my trick. From the list of forms, I can select
the form that I want. I then delete the “form_” before the
form name, and I now have my form name. If the form
that you want isn’t in this list, you must ensure that the
HasModule property of the form is set to True. This can
make for slower loading of the form if it has no code
behind it, so beware about getting carried away with
setting this property to True.

The form as a class module
When you open a form with the DoCmd.openForm
method, there’s a limited number of things that you can
do to the form:

• Show the form in datasheet or normal mode.
• Filter records behind the form.
• Display the form in Dialog mode.

If you’re really tricky, you can use the OpenArg
argument to pass all sorts of clever text strings to the
form. These clever text strings can then be manipulated in
the Form_Open event to manage the form.

There’s a simpler alternative to these limited choices
and complicated code: Use the form as an object. You can
then manipulate the form with code like this:

DoCmd.OpenForm "Orders"
With Form_Orders
  .AllowEdits = True
  .RecordSelectors = True
  .NavigationButtons = False
  .Caption = "Smart Access Demonstration"
  .CustomerID.StatusBarText = "My Message"
End With

As you can see, many of the things that you might set
at design time (for example, turning the record selectors
and navigation controls on and off) can be handled easily
in code. This is very useful because it allows you to
modify the way the form looks while it’s being opened
rather than at design time. For instance, navigation
buttons are useful for managing many records and a
helpful addition to the user interface. But if all you want
the form to do is allow the user to add one new record,
then you can turn the navigation buttons off as you openFigure 1. Retrieve all the form class objects in your database.

gaz
Typewritten text
Downloads 
www.vb123.com.au 



10 http://www.smartaccessnewsletter.comSmart Access  May 2002

the form and reduce the clutter in your user interface.
There’s nothing more to the manipulation of the

properties for your form than adding a code block after
your OpenForm as I’ve done for the Orders form in my
previous example:

With Form_Orders

End With

Now you can type a period inside the With block,
and the following programmable items for the form
will appear:

• All the form’s methods (Undo, SetFocus, Requery,
Refresh, and Repaint)

• An abundance of properties, including Dirty, Hwnd,
Cycle, and DatasheetFontName

• All the text boxes, combo boxes, and other controls
that exist in the form

If you select a control for the form, you can
manipulate the properties of that control. Available
control properties include its default value, font
characteristics, and control tip—plus all the other
properties that you’re used to setting at design time.

Data entry modes
The primary reason I’ve been manipulating the
properties of forms in code is to set up different styles of
interfaces for my end users without generating multiple
copies of what’s basically the same form. The following
example demonstrates how the user interface can be
switched to either Add or Edit mode according to a field
on another form (shown in Figure 2). If the user leaves
the order number field blank, the next form is opened
in DataEntry mode. If the order number isn’t blank,

DoCmd.OpenForm "Orders", , , , , acHidden
With Form_Orders
  If IsNull(Me!orderReq) Then
      .AllowAdditions = True
      .DataEntry = True
      .NavigationButtons = False
      .Visible = True
  Else
      .Visible = True
      .DataEntry = False
      .NavigationButtons = True
      .OrderID.SetFocus
      DoCmd.FindRecord Me!orderReq, acEntire, _
                , acSearchAll
  End If
End With

Your own filters
The DoCmd object’s OpenForm method allows you to
add your own Where clause or query to filter your data.
However, it’s often cleaner and more flexible to program
filters using the filter properties of the form. This code
shows how easy it is to modify the Filter property of
another form to have it show only the records for a
particular customer:

DoCmd.OpenForm "Orders", , , , acFormAdd, acHidden
With Form_Orders
 .Filter = "CustomerId = '" & Me!CustomerReq & "'"
 .FilterOn = True
 .NavigationButtons = True
 .Visible = True
End With

A word of caution, if performance is a big issue:
When you use DoCmd.openForm and don’t apply
either a filter query or a Where clause, the form will open
with a recordset that retrieves all the data in the
recordsource. Applying the filter in the OpenForm
method ensures that the recordset behind the form is
filtered before it’s displayed. If you’re using the FilterOn
and Filter properties of the form as I do here, it’s wise to
open the form using the acFormAdd constant in the

Figure 2. The demonstration form.

then the form receives the focus in
code, and the FindRecord method of
the DoCmd object is used to find the
specified order.

The code for this is shown in
the next snippet. While there’s not
much difference between the two
versions of the form, the differences
reflect things that make the user
interface less confusing than it could
be and tailor the second form for its
purpose. For example, the record
navigation control is on when an
order exists and off when you’re
adding a new order. Further on, I’ll
show you how the form’s recordset
can be used to determine whether an
order actually exists.

Dim UserResponse As Variant



http://www.smartaccessnewsletter.com 11Smart Access  May 2002

OpenForm’s dataMode argument
(as I’ve done in my example). This
opens the form with no data being
displayed. This is fast, and your
data will be displayed when you turn
the filter on. I also like to hide the
form from the user while the form is
being manipulated by using the
OpenForm’s acHidden property. The
form is made visible by setting the
form class’s Visible property
at the end of my manipulation.

Look, Mum—no hands
If ever I had a golden rule for
computing, it would be that you
never want to code the same thing
twice, especially if you’re being paid
for it. I ran into this issue with a

Now that I’ve established that I have some records, I
loop through the records for that customer. You may want
to do this with the form hidden once you move the
application to production. As I’m about to add the order
totals to a blank table, I need to clear the table first and
turn off all the Access insert warnings:

DoCmd.SetWarnings False
DoCmd.RunSQL "Delete from MyOrders"
Form_Orders.Visible = True

Now it’s a matter of looping through the form’s
recordset, which has the effect of showing each record on
the form (a good reason to make the form invisible unless
you think that your users will enjoy the show). It seems to
be necessary to use the form’s recalculation method for
each record to ensure that calculated fields are populated.

In this example, I’ve used a SQL Insert statement to
add the data to my temporary table. All of this code
occurs in the form that opened and is controlling the
Orders form and not in the Orders form itself. As you can
see in the next code block, I’ve referred to the Orders
form’s subtotal field by treating it as a property of the
Orders form. The full property that I reference is
Form_Orders.Subtotal.Value. To move to the next record
for this customer, I simply use the MoveNext method of
the recordset. The form then shows the next record:

 Form_Orders..Recalc
 sqlStr = "INSERT INTO MyOrders " & _
   "( OrderID, SubTotal, Freight, Total ) values " & _
   "(" & Form_Orders.OrderID & "," & _
   Form_Orders.Subtotal & "," & _
   Form_Orders.Freight & "," & _
   Form_Orders.Total & ")"
  DoCmd.RunSQL sqlStr
  Form_Orders.Recordset.MoveNext
Wend

DoCmd.OpenTable "MyOrders"

Figure 3. The slightly modified Northwind orders form.

programming buddy where we realized (after spending
hours trying to calculate a total on a form using sub forms
and other bits of code) that we then had to rewrite all that
code to use those results in a report. In this case, I realized
that the form actually contained all the business logic for
the calculations.

This brings me to the next example where I show you
how to transfer calculations from the good old Northwind
Orders form to a temporary table (see Figure 3). The fields
that I’ll transfer are the OrderId, subtotal, freight, and the
total calculated on the form.

I start by opening the Orders form and filtering the
customer records. In the sample code, I call the code
that’s behind the Find Customers button. Never forget
that code under a button can be reused elsewhere since it
is, after all, just a subroutine. After the filter, I have an
open form with only the orders for the one customer I
was filtering for.

I then manipulate those records by using the form’s
Recordset property. This is really exciting, because you
can walk through records using all the familiar MoveNext
and MoveFirst methods of a recordset. You can also test to
see whether the recordset has no records and stop any
action. In the following code, I also test the RecordCount
property when opening the form to see whether any
data exists:

With Form_Orders
  .Recordset.MoveFirst
  DoCmd.SetWarnings False
  If .Recordset.RecordCount = 0 Then
    MsgBox "No orders were found for " & _
    Me!CustomerReq, vbOKCancel, "Try Again"
    DoCmd.Close acForm, "Orders"
    GoTo exit_cmdTotals_Click
  Else

Unfortunately, this doesn’t work in Access 97 because
the form class module doesn’t have a Recordset property.



12 http://www.smartaccessnewsletter.comSmart Access  May 2002

Open the same form twice
On the Orders form (see Figure 4), I’ve put a button to
show the form again. You can actually display a copy of
the current form without copying it to a new name in
the database container. You can do this because the form
is a class and can be instantiated as a new object. The
following code shows how I can make a copy of the form,
filter it for the current order, and modify a few properties
so that the form looks different from the current version.
I find this technique is useful for comparing two complex
records using a standard form view:

Static lastTop As Long, lastLeft As Long
Set frmOrders = New Form_Orders

With frmOrders
  .Visible = True
  .Filter = "orderId = " & orderReq
  .FilterOn = True
  .Caption = "Filter:  " & .Filter
  .Detail.BackColor = vbWhite
  lastTop = lastTop + 100
  lastLeft = lastLeft + 100
  DoCmd.MoveSize lastTop, lastLeft
  .cmdCopyOrder.Visible = False
End With

Of course, there are a few tricky things to realize
about this new form object. You’ll have to explicitly set
the Visible property of the new copy of the form to True to
get it to display. Even more perplexing is that, in your first
attempt, you’ll probably write the code so the variable
used to refer to the form immediately drops out of scope
once the form has been displayed. Once the variable is out
of scope, the copy of the form is destroyed. This is what
happens if you use a local object variable to refer to the
form like this:

Sub CopyOrder
Dim frmOrders As Form_Orders
  Set frmOrders = New Form_Orders
  With frmOrders
    .visible = true
  End With
End sub

The solution is to declare the variable that refers to
the form object so that it remains in scope even when
the subroutine has completed running. You can achieve
this by declaring the variable as at the module level of
the form:

Dim frmOrders As Form_Orders

Sub CopyOrder
  Set frmOrders = New Form_Orders
  With frmOrders
    .visible = true
  End With
End sub

Another solution is to declare the variable as static:

Static frmOrders As Form_Orders

Declaring the variable as static has an interesting
effect: If you then run the same code again, the form
seems to save the record that you’re editing and then
refresh the same object with the new properties that
you’ve set for the form. This means that if you want
to maintain multiple versions of the class objects,
you’ll need to keep an array of form objects. An even
more sophisticated approach is to make your own
collection of form objects and manage the forms in that
special collection:

Figure 4. Create a
new instance of
the Orders form
and display the
current order.



http://www.smartaccessnewsletter.com 13Smart Access  May 2002

Dim colOrders As Collection

Sub CopyOrder
Dim frmOrders As Form_Orders
  Set frmOrders = New Form_Orders
  With frmOrders
    .visible = true
  End With
  colOrders.Add Form_Orders
End sub

So when does this second form actually close down
or go out of scope? The form will close down if the user
closes it down manually, and it will close down if the
form that holds the static or module-level variable is
closed down. To have the form stay alive for the life of
your application, declare the variable that refers to the
form as Public in a module:

Public frmOrders As Form_Orders

Your own methods
Everything has been pretty exciting thus far, but there’s
more. You can make your forms really clever by exposing
your private subroutines and functions as Public. For
example, when I made a new instance of the Orders form,
I decided that it would be cool to not only open the
Orders form but to use a special method of that form to
display that order in yet another form as well.

I managed this by making the CopyOrder routine a
public subroutine. I also added an optional argument to
this subroutine so that I could pass an order number of
my choosing into the subroutine:

Public Sub CopyOrder(Optional ShowOrderID As Variant)

Static lastTop As Long, lastLeft As Long
Static frmOrders As Form_Orders
Dim orderReq As Variant

If IsMissing(ShowOrderID) Then
   orderReq = Me!OrderID
Else
  orderReq = ShowOrderID
End If

End sub

As you can see in Figure 5, this public function now
appears as a new method of the Form_Orders form. I now
can call this new method using an order number like this:

With Form_Orders
  .CopyOrder Me!orderReq
End With

It’s that easy to turn a subroutine into a method. Any
public function also acts as a method, except that they can
return values after they’ve completed.

You can also add public properties to your form. The
easiest way is to choose Insert | Procedures from the
menu while working in a code module behind a form.
You can also write the code yourself. To create a property
that can be both read and written to, you must write a
Property Let (which will be run when someone tries to set
your property) and a Property Get (which will be run
when someone tries to read your property). These
property routines allow the user to change the OrderNum
variable inside the form through a property called
OrderNumber:

Dim OrderNum As String

Public Property Let OrderNumber(Order_Numb As String)
OrderNum = Order_Number

End Property

Public Property Get OrderNumber() As String
  OrderNumber = Order_Num
End Property

As you can see, a Property Let looks very much like a
subroutine that accepts a single parameter; a Property Get
looks like a function that returns a value.

Code that uses the property might look like this:

Dim frmOrders As Form_Orders

Sub CopyOrder
  Set frmOrders = New Form_Orders
  frmOrders.OrderNumber = Me!OrderID

Finally, you can have your form fire events back
to the code that created it. This code, placed inside
the Form_Orders form, defines an event called
OrderNotFound:

Event OrderNotFound()

To signal that the order isn’t found, the Form_Orders
form would use the RaiseEvent command with the name
of the event:

RaiseEvent OrderNotFound

In the code that creates the Form_Orders form, you
have to declare the variable that refers to the form with
the WithEvents keyword in order to catch the events.Figure 5. Once you set up a form class method, it immediately

becomes visible in IntelliSense. Continues on page 23



http://www.smartaccessnewsletter.com 23Smart Access  May 2002

Once you do that, you can respond to the events by
writing an event procedure whose name consists of the
variable name and the event name:

Dim WithEvent frmOrders As Form_Orders

Sub CopyOrder
  Set frmOrders = New Form_Orders
  frmOrders.OrderNumber = Me!OrderID
End Sub

Sub frmOrder_OrderNotFound()
..code to handle order number not found
End Sub

The download database
The Download file for this article (available at
www.smartaccessnewlsetter.com) consists of a database in
Access 2000 format. I originally started doing all the
samples in Access 97 but stopped because Access 97
wouldn’t support recordsets behind the form. The Access
97 version of this code is actually the Access 2000 version
saved back to Access 97. Most of the sample code works,
but the last two options on the demo form (which depend
on the Recordset property of the form) will fail under
Access 97.

Your Access forms are pretty smart objects and are

Microsoft Access Forms...
Continued from page 13

one of the reasons why Microsoft Access is such a
configurable tool. Now that you’ve seen how the form can
be manipulated as an object, you can make smart forms to
suit your clients’ user interface requirements. The “form
as class object” also includes all the form properties and
events that you’re used to manipulating. Now you can
manage these properties in code before you expose the
form to your user. In some cases (for instance, recordset
manipulation), you can even leverage the considerable
work that you’ve put into your forms to transfer
information to tables. You can then use those forms in
reporting and other activities. Forms are a class act, so
why not start using them as the class objects that they
truly are? ▲

FORMCLSS.ZIP at www.smartaccessnewsletter.com

Garry Robinson works for GR-FX Pty Limited, a company based in Sydney,

Australia. If you want to keep up-to-date with the his latest postings on

Access issues, visit his company’s Web site at www.gr-fx.com or sign up

for his Access e-mail newsletter by sending a blank e-mail to tips@gr-

fx.com. He’s recently made available a library of code and forms that he

reuses in all his projects. Read about it at www.vb123.com/toolbox.

garry@gr-fx.com.

Useful Further Reading
and Resources

• Search your Access Help for “Program with Class

Modules.” Choose the topic “Create a class module that’s

not associated with a form or report.” The links for this

page take you to information about programming form

class objects.

• The Access 2000 Developers Handbook (Desktop Edition)

covers this topic in great detail. Read my review at

www.vb123.com/books.

Sign up now for Pinnacle’s FREE eNewsletters!
Get tips, tutorials, and news from gurus in the field

delivered straight to your Inbox.

http://www.FREEeNewsletters.com

XML • Web Development • SQL Server • Visual Basic • MS Access • Oracle • .NET • Delphi •
FoxPro • XML • Web Development • SQL Server • Visual Basic • MS Access • Oracle • .NET

XML • Web Development • SQL Server • Visual Basic • MS Access • Oracle • .NET • Delphi •
FoxPro • XML • Web Development • SQL Server • Visual Basic • MS Access • Oracle • .NET

XML Web Reports...
Continued from page 8

Although I didn’t run any time trials, it’s reasonable
to conclude that it’s faster to create a single XML file
from a query than to create both XML and XSL files from
a report.

I have to admit that, though I was excited to hear
that Access 2002 would include support for XML, I
was at first hard pressed to find a real-life application
for it. Once I began to create XML reports for Web apps,
it became clear to me that Access 2002 could greatly

simplify the process. Now, even if I use a different
method to refresh the XML files used in the transform,
I’ll continue to use the ExportXML method to generate
the complex XSL files required to produce rich
Web reports. ▲

XMLREPORT.ZIP at www.smartaccessnewsletter.com

Danny J. Lesandrini, a Microsoft Certified Professional in Access, Visual

Basic, and SQL Server, has been programming with Microsoft Access

since 1995. He maintains a Web site containing Access-related code

solutions at http://datafast.cjb.net and replies to all questions and

comments sent to him via email. datafast@attbi.com.


