
14 http://www.smartaccessnewsletter.comSmart Access May 2002

Smart Access

Matching Data for Analysis
Rickard Olsson 20002000 20022002

In this article, Rickard Olsson shows how to compare rows in
SQL by loading the desired data into two tables for easy
comparison. In fact, he shows two different methods and tries
to figure out which method will give the best performance.

I was inspired by Mike Westcott’s article in the January
2002 issue about “Ordered Calculations with SQL.”
He ended up with a philosophy about taxi drivers

that stressed why we have to accept that handling
comparisons between rows using SQL isn’t problem-
free. I found myself with exactly this problem with one
of my customers, and I had to solve the comparison
problem reliably. If I couldn’t do it, the application would
be worthless.

My customer was teaching air-traffic controllers
using a Unix-based simulator that re-creates the work
environment for air-controllers. They also use the
simulator for creating situations that don’t yet exist but
will arise (for example, adding a third runway at Arlanda
in Stockholm or increasing the traffic load in Landvetter,
Sweden). The simulator logs everything that happens in a

simulation exercise and loads all logged data into a large
Oracle database, running on Unix.

One of the most important factors that influences the
stress put on controllers is how many radio calls they
have to make (and how long each takes) to carry out their
mission. The data produced by the simulator (radio call
start time, radio call end time) isn’t much help in
analyzing the level of stress. My clients needed more
analysis than the software provided.

My clients wanted a fast way of getting the
simulation results presented in a graphical format that
could be shown to the people involved in the exercise. At
the debriefing session held after each exercise, the
participants discuss the outcome of the exercise. They
wanted some facts to be added to their subjective
experiences. I suggested an Access solution with an
interface that would support simple selection and
grouping of data. My client was expecting my solution to
have a response time in the range of one to two seconds to
produce the graph so that drawing on the numbers
wouldn’t slow the discussion. Figure 1 shows the kind of

Figure 1. This is
what they want.

gaz
Typewritten text
Downloads www.vb123.com.au

http://www.smartaccessnewsletter.com 15Smart Access May 2002

information that my client wanted. Providing that
analysis using SQL is possible, but it’s not simple SQL,
which is why I was called in.

After initial trials using ODBC against the Oracle
database, it was clear that I wouldn’t get the desired
performance by querying Oracle. Not even pass-through
queries gave us the desired performance. Part of the
problem was that the Oracle database contained a lot of
irrelevant information from older exercises that the client
wouldn’t use in this analysis scenario. In addition, the
indexes in the database weren’t what we needed for the
analysis that we’d be doing. I wasn’t supposed to change
the design of the Oracle database (for instance, by adding
new indexes) since the database belonged to a system
developed by a company in England. The obvious
solution in this situation was to offer the users an initial
selection menu where they could select the desired
exercises and then load the selected data into an mdb
where it could be analyzed.

Creating tables
What you see in Figure 2 is a view of the output of the
two Oracle tables that I needed (Exercise_Event and
Communication_Event). Each exercise has a unique

counter field, and each logged event has a unique
counter. Since it’s not possible for an operator to have two
radio calls at the same time on the same frequency, it’s
easy to arrange the events in the order they occurred by
sorting on Exercice_Id, Frequency, Role, and Event_No. I
put the rows with START_RADIO_TX in the Event_type
fields into one work table (RadioStart) and the STOP_
RADIO_TX records into another work table (RadioEnd).
I then sorted the rows as I described to make it easy to
pair the start and stop of each call. With this arrangement,
it’s possible to calculate the duration of each call. One
other note: This design also assumes that it’s not possible
to end a radio call before it starts, which is a fairly
reasonable assumption.

The simulation, for a variety of reasons, also
generated calls with a duration of zero. I ignored these
results as I loaded my work tables. It does mean that, on
some occasions, the number of rows in the input tables
exceeded the number of rows in the work tables.

So what I needed was a field in each of the two work
tables that would let me match the corresponding start
and end events for the calls. Effectively, this field would
be a counter, identifying the start and end times for the
various calls (for instance, the start and end times for the

Figure 2. Sample of data collected by simulator.

Figure 3. Append
query to collect
RadioStart events.

first call, the second call, and so on).
There were two ways to achieve this:

• Use a Make Table query to
initially load the table and then
an Alter Table query to add the
values for the matching field.

• Use Delete to clear out a set of
existing tables and then Append
to add the table. This table would
have a counter field defined.

The problem with the Delete and
Append solution is that the counter

16 http://www.smartaccessnewsletter.comSmart Access May 2002

won’t be automatically reset to 1 when the rows in the
table are deleted. If you’re using Access 2000 or later, you
can use a SQL Alter statement to set the identity value on
an existing table:

Alter Table AutoTable & _
 Alter Column RowNo Identity (1, 1)

With earlier versions of Access, compacting the
database would reset the autonumber fields. I solved the
problem a third way by creating an empty template for
my work tables and copying that template to make the
two work tables.

In Figure 3 (on page 15), you can see the Append
query that fills the RadioStart table with data from the
two Oracle tables. As you can see, the RadioStart table
has a counter field called RowNo defined, which will be
filled with what I call a “trustworthy counter” (see Figure
4). The counter is an ordinary field rather than an
autonumber field. The Order By clause in the Append
query that loads the table should allow you to depend on
the order that records are inserted into the work table (at
least with Jet).

By doing a similar Append query on the ending
events, I have two tables filled with the start and end
events on the same row for each call. A simple join on the
counters will pair the correct rows and calculate the
duration of the radio calls by using the DateDiff function:

Select EXERCISE_ID, TX_OP_ROLE, EXERCISE_TIME,
 TX_RADIO_FREQ,
 DateDiff('s',[RadioStart].[EXERCISE_TIME],
 [RadioEnd].[EXERCISE_TIME]
 From RadioStart Inner Join RadioEnd
 On RadioStart.RowNo = RadioEnd.RowNo

Which method?
As I described earlier, there are two methods of loading
the tables—RadioStart and RadioEnd—which raises the
question of which one to use. Both techniques are equally
complicated from a maintenance point of view.

To make the decision, I generated some code to see
whether the two methods differ in some important
characteristic—response time, for instance. The Method_1
function uses the Make Table method:

Public Sub Method_1(_
 Optional InList As Variant = "1482,1483")
Dim db As DAO.Database
 TimeBetween "Method_1 Start", False
 Set db = CurrentDb
 Drop_Table "RadioStart"
 DoCmd.CopyObject , "RadioStart", _
 acTable, "Radio_Template"

 Modify_Template "RadioStart_APP", InList
 db.Execute "RadioStart_APP"

 Drop_Table "RadioEnd"
 DoCmd.CopyObject , "RadioEnd", _
 acTable, "Radio_Template"
 Modify_Template "RadioEnd_APP", InList
 db.Execute "RadioEnd_APP"
 TimeBetween "Method_1 End"
End Sub

The preceding code calls some standard functions:
TimeBetween, Drop_Table, and Modify_Template.
TimeBetween is used to show elapsed time in the debug
window. It’s called at the entrance and the exit of the
procedure being timed:

Sub TimeBetween(p,_
 Optional Disp As Boolean = True)
 Static TPrev, PPrev
 If Disp Then
 Debug.Print PPrev & "-" & p & _
 ":", Timer – Tprev
 End If
 TPrev = Timer
 PPrev = p
End Sub

Drop_Table drops a table from the current database
if the table exists (and does nothing if the table doesn’t
exist). Modify_Template is used to modify the Where
clause in the query that extracts the data from the joined
tables in Oracle. This allows me to extract only the events
from the last simulation and ignore irrelevant data.

The Method_2 function uses my other technique:
Create the table, load it, and then add the RowNo column
using an Alter Table command like this one:

ALTER TABLE RadioStart ADD COLUMN RowNo Counter
 CONSTRAINT PrimaryKey PRIMARY KEY

The same functions used for the Method_1 function
are used in the Method_2 function:

Public Sub Method_2(_
 Optional InList As Variant = "1482,1483")
Dim db As DAO.Database
 TimeBetween "Method_2 Start", False
 Set db = CurrentDb
 Modify_Template "RadioStart_CRE", InList

 Drop_Table "RadioStart"
 db.Execute "RadioStart_CRE"
 db.Execute "RadioStart_Add_RowNo"

 Drop_Table "RadioEnd"
 Modify_Template "RadioEnd_CRE", InList
 db.Execute "RadioEnd_CRE"
 db.Execute "RadioEnd_Add_RowNo"
 TimeBetween "Method_2 End"
End Sub

Both methods were clocked on my 366Mhz DellFigure 4. Field definition in the RadioStart table.

http://www.smartaccessnewsletter.com 17Smart Access May 2002

Inspiron 7000 (running Win 2000 Professional as its
operating system and Access 2000 SR-1). I tested with two
different sets of Jet input tables as shown in Table 1. Test 1
had fewer lines in the input tables than Test 2, but both
gave the same number of rows in the work table.

Table 1. Test results for a single exercise.

Table/Method Test 1 Test 2 Oracle
Communication_Event 700 36 649 300 000
Exercise_Event 11 662 109 706 950 000
Collected rows 677 677 677
Method_1,elapsed (s) 0.52-0.53 0.91-0.93 No data
Method_2,elapsed (s) 0.41-0.43 0.71-0.74 No data

Table 1 shows that Method_2 seems slightly faster
than Method_1. But what happens if the number of rows
collected is something other than 677? Table 2 shows the
results that I got by running the test three times for
different numbers of output records and taking an
average of the runs. Figure 5 shows the results as an Excel
graphic. These results seem to indicate that Method_2 is
the better choice if many rows are collected.

Table 2. Test results by record count.

Collected rows Method_1 (s) Method_2 (s)
0 0.13 0.09
338 0.61 0.50
677 0.93 0.77
1,430 2.05 1.73
5,600 5.50 3.84
9,939 8.70 5.45
14,773 13.30 8.25
18,216 16.10 9.70

If you let Excel make a regression line (a linear

approach. At my customer, though, Method_1 is the one
actually running because, during the development, I
didn’t have the time to make this analysis. I just used
my best judgment and guessed that Method_1 was the
best choice.

The problem of calculating durations between
different rows in SQL often occurs when analyzing
computer performance. In a system that I developed for
analyzing performance problems in Access, I went into a
very troublesome analysis working with a log file that
showed start and end times for different procedures that
called each other. In that situation, I had to take into
account the execution stack and its depth, which almost
drove me crazy when trying to analyze the data. Since I
was the one producing the log file, my solution at that
time was to put some more logic into the logging
functions so the problems could be avoided when
analyzing the data. As always, in real life, the best
problem-solving method is to avoid problems. If that
doesn’t work, you could always try to imagine you don’t
see the problem. Being lazy is often smart. ▲

COMPARE.ZIP at www.smartaccessnewsletter.com

Rickard Olsson is a senior database specialist in Malmoe, Sweden, with

experience with databases dating to 1975. Until the beginning of the

1990s, he did most of his work with IBM mainframes using tools like APL,

DL/I, DB2, and Focus. Since Access 2 arrived, most of his time has been

spent with Windows and Office products, since all of his customers

moved to the PC environment. Rickard holds an MCP in both Access and

VB and is working on his MCP for SQL Server. Since 1985, he’s run a small

IT consultancy company that serves customers who want to make their

work with their computers more useful. When not working, he spends

most of his time with his wife at their cottage in the archipelago of

Karlskrona in the south of Sweden. www.ricol.se, Ricol@sbbs.se.

Figure 5. Elapsed time as a function of collected rows.

function seems a reasonable choice)
for the two methods, you’ll receive
the following formulas for the
response time in seconds as a
function of collected rows:

• Method_1: RT(s) =
0.41 + 0.0009n

• Method_2: RT(s) =
0.51 + 0.0005n

Runtime isn’t everything,
though. If you look at the growth
of the mdb file (for example, look
at the “holes” produced by deleting
a table and needing a Compact to
remove), you’ll find Method_2 is
the better choice here also. So, based
on this analysis, it seems obvious
(at least on my computer) to use
the Make Table and Alter Table

