
12 www.smartaccessnewsletter.comSmart Access August 2002

Working SQL Smart Access

Demystifying JOINs
Russell Sinclair 20002000 20022002

In this month’s installment of Working SQL, Russell Sinclair
explains the mysteries of the JOIN statement in SQL and how
to use it with both Jet and SQL Server.

IF you use Access enough that you’re reading this
publication, the chances are that you’ve spent a
good deal of time designing queries. You’ve used

the Access or SQL designers to create queries that
link tables together and retrieve data from multiple
tables. Chances are that you’ve also spent at least some
time writing SQL statements yourself to execute from
code or to use in your own queries. But if you want to
get the real power out of any database system, you
need to understand SQL. And the first step in
understanding how to write SQL is understanding
how to create JOINs.

JOINs seem to be a hurdle that users have to jump
when writing SQL statements. The biggest problem
with them is that the documentation on how to write a
JOIN statement in Access is very limited. Also, the
JOIN syntax in Access is totally different from the
JOIN syntax in SQL Server (although you can use
Access syntax in SQL Server—you just don’t want to).

So that everyone is starting from the same page, I’ll

first explain what the different types of JOINs are. If
you already know them (including the one Access
doesn’t support), feel free to skip ahead.

Types of JOINs
There are three basic types of JOIN: INNER, OUTER,
and CROSS. In order to illustrate the effects of the
different types of JOINs, I’ll use the data from the
tables shown in Figure 1, Figure 2, and Figure 3.

INNER JOINs are the most commonly used type
of JOIN. An INNER JOIN combines the data in two or
more tables and returns the data from both tables
where the linked fields match. Any records in either
of the tables that don’t have a corresponding value in
the other table won’t be returned. Using my example
data, an INNER JOIN of tlkpCompanyType with
tblCustomer would yield the results shown in Figure 4.

As you can see, the customer name “Friendly
Building Management” isn’t returned in the results.
Neither are the “GIS” or “Network Support” company
types. This is because INNER JOINs only return data
where the joined fields match. All other data is

Figure 1. Company
Types table.

Figure 2. Customers table.

Figure 3. Orders table.

Figure 4. INNER JOIN of Company Types and Customers.

gaz
Typewritten text
Downloads www.vb123.com.au

www.smartaccessnewsletter.com 13Smart Access August 2002

excluded from the results.
OUTER JOINs differ from INNER JOINs in that the

data returned contains all of the data from the INNER
JOIN plus all the rows from one of the tables even if
that row doesn’t have matching data in the other table
(based on the joined fields). Any row that doesn’t have
a matching row will be matched by NULL values,
which represent that no data is coming from the other
table. There are three different types of OUTER JOIN:
LEFT, RIGHT, and FULL.

With LEFT and RIGHT OUTER JOINs, the words
“left” and “right” refer to the table for which all rows
will be returned. The left or rightness of a table has
nothing to do with the relationships defined between

the tables. The location of the table (left or right) is
based on the order of the tables in the SQL statement.
The table on the left side of the JOIN statement is the
left table, and the table on the right side of the JOIN
statement is the right table. A LEFT OUTER JOIN
between tlkpCompanyType and tblCustomer where
tlkpCompanyType is on the left side of the JOIN
statement yields the results shown in Figure 5.

With this LEFT OUTER JOIN, the two unused
Company Types are listed, but NULL values appear
in the fields from the Customers table. I would
have gotten the same results if I’d used a RIGHT
OUTER JOIN and also switched the order of the
tables in the JOIN.

Figure 5. LEFT OUTER JOIN from Company Types to Customers.

Figure 6. RIGHT OUTER JOIN from Company Types to Customers.

Figure 7. FULL OUTER JOIN between Company Types and Customers.

Changing the JOIN type to a
RIGHT OUTER JOIN and not
switching the tables would return
the data shown in Figure 6. All
the records are returned from
the Customers table, and any
Customers without associated
Company Types have NULL values
to represent that no matches exist
in the Company Types table.

FULL OUTER JOINs take the
concepts of LEFT and RIGHT
OUTER JOINs and combine them.
All data from all tables is returned,
but unmatched data on either side
of the JOIN statement is returned
with NULL values representing
unmatched data in the other table.
A FULL OUTER JOIN of the same
data would return the results
shown in Figure 7.

The final type of JOIN, a
CROSS JOIN, returns all possible
combinations of all rows in one
table with all of the rows in another
table (called the Cartesian product
of the two tables). Figure 8 shows
some of the data from a CROSS
JOIN between tlkpCompanyType
and tblCustomer.

Although you can only see the
first 10 records (you can view the
rest by running qselCROSSJOIN
in the sample database in this
month’s Download file, available at
www.smartaccessnewsletter.com),
you can see that each Company
Type is shown matched with all five
Companies. The number of records
returned by a CROSS JOIN can be
determined by multiplying the

14 www.smartaccessnewsletter.comSmart Access August 2002

number of records in each table together (in this case,
five companies * six company types = 30 rows).

Now that you know what the different types of
JOINs are, you need to know how to write them.

JOIN syntax
The basic syntax for a JOIN statement in a FROM
clause is:

FROM Table1
 [INNER|[LEFT|RIGHT|FULL] [OUTER]|CROSS] JOIN Table2
 [ON MatchExpression]

Table1 and Table2 refer to the left and right tables,
respectively. MatchExpression refers to the comparison
made between the two tables. When creating a CROSS
JOIN, the ON portion of the statement should be
omitted. In almost all RDBMS systems, the keyword
OUTER is optional, and this is true for Access and SQL
Server. Just using LEFT, RIGHT, or FULL is enough to
signal that you want to use an OUTER JOIN. It’s
unlikely that you’ll see many places where the word
“OUTER” is actually used by a programmer. In fact,
Access will quietly remove the OUTER keyword if you
type it into the Query Designer’s SQL view just as soon
as you save and reopen your query.

In order to understand the syntax for creating a
JOIN, look at the statements used for some of the
previous examples. This is the FROM portion of the
SQL statement for the results shown in Figure 4—
qselINNERJOIN:

FROM tlkpCompanyType
 INNER JOIN tblCustomer
 ON tlkpCompanyType.CompanyTypeID
 = tblCustomer.CompanyTypeID

In this example, tlkpCompanyType is the left
table, and tblCustomer is the right table. The expression
used to join the tables links them only where the
CompanyTypeID in one table is exactly equal to the

CompanyTypeID in the other table.
The LEFT JOIN used to return the data in Figure

5 is:

FROM tlkpCompanyType LEFT JOIN tblCustomer
 ON tlkpCompanyType.CompanyTypeID
 = tblCustomer.CompanyTypeID

The tables are in the same order here, and the
match expression hasn’t changed. The only difference
is that the INNER has changed to a LEFT. All data is
returned from tlkpCompanyType, but only the
matching records are returned from tblCustomer.

The standard CROSS JOIN syntax used to return
the data in Figure 8 would be:

FROM tlkpCompanyType CROSS JOIN tblCustomer

In this case, you don’t enter any JOIN criteria.
This statement can be written another way, without

using the JOIN keyword—by simply separating the
table names by commas, as in:

FROM tlkpCompanyType, tblCustomer

When creating queries in Access, you must use the
comma syntax because Access doesn’t understand the
CROSS JOIN statement.

I’ve left off FULL OUTER JOINs until this point, as
there’s one caveat with them. Microsoft Access doesn’t
support this type of JOIN. You can easily create a FULL
OUTER JOIN in SQL Server using the statement:

FROM tlkpCompanyType FULL JOIN tblCustomer
 ON tlkpCompanyType.CompanyTypeID
 = tblCustomer.CompanyTypeID

However, you must use a UNION query to
simulate a FULL JOIN in Access. You do this by
unioning a LEFT JOIN with a RIGHT JOIN. Since a
standard UNION query eliminates duplicate records,

Figure 8. CROSS
JOIN between
Company Types
and Customers.

www.smartaccessnewsletter.com 15Smart Access August 2002

only those records that aren’t returned in the first query
will be returned in the second. The full statement used
in Access to return the data shown in Figure 7 is:

SELECT tlkpCompanyType.CompanyTypeID,
 tlkpCompanyType.CTDescription,
 tblCustomer.CustomerID,
 tblCustomer.CustomerName
FROM tlkpCompanyType LEFT JOIN tblCustomer
 ON tlkpCompanyType.CompanyTypeID
 = tblCustomer.CompanyTypeID
UNION
SELECT tlkpCompanyType.CompanyTypeID,
 tlkpCompanyType.CTDescription,
 tblCustomer.CustomerID,
 tblCustomer.CustomerName
FROM tlkpCompanyType RIGHT JOIN tblCustomer
 ON tlkpCompanyType.CompanyTypeID
 = tblCustomer.CompanyTypeID

Don’t use the optional ALL keyword with the
UNION keyword because UNION ALL specifies that
all records should be returned, without filtering out
duplicate records. If there’s a possibility that duplicate
records could be omitted when they’re wanted, use the
ALL keyword but add a WHERE clause to the second
query to remove those rows that are returned by the
first query.

Nested JOINs
A common area for people to run into problems in
Access when creating queries is in nested JOIN
statements. These are used in queries that retrieve
data from multiple tables and require that each table
be joined to other tables in the FROM statement.

Creating nested JOINs in SQL Server is easy. All
you have to do is add multiple JOIN statements with
an ON section (if required). Figure 9 shows the data
returned by joining the Company Type, Customer,
and Order tables. This query uses a nested JOIN.

The FROM statement in this query, if written for
SQL Server, would be:

FROM tlkpCompanyType INNER JOIN tblCustomer
 ON tlkpCompanyType.CompanyTypeID
 = tblCustomer.CompanyTypeID
 INNER JOIN tblOrder
 ON tblCustomer.CustomerID
 = tblOrder.CustomerID

Each JOIN can be written in succession without
regard for the order of the tables in the FROM

statement as long as your ON statement links the
necessary fields together. Effectively, you can think of
the two tables that have been joined together as a single
new table that you can join to a new table.

Access requires that you nest JOINs by bracketing
JOIN statements when combining them. A more
appropriate definition for the syntax of creating an
INNER or OUTER JOIN in Access would be:

FROM TableOrJOINExpression1
 [INNER|[LEFT|RIGHT] [OUTER]] JOIN
 TableOrJOINExpression2 ON MatchExpression

The best way to think of this is to break down each
JOIN that must take place into a single unit. Suppose I
wanted to join four tables together based on ID values
in each table. I’ll use the examples A.aID, B.bID, C.cID,
and D.dID to make things easier and only use INNER
JOINs. In my example, table B is related to table A on a
field called B.aID; C is related to B on a field called
C.bID; and (just to make things interesting), C is also
related to D on a field called C.dID. In order to break
this down for use in Access, I need to perform each
JOIN separately.

The first JOIN I want to make is between C and D.
This can be done by using the simplest syntax linking
the two tables.

C INNER JOIN D ON C.dID = D.dID

This statement can be thought of as a single JOIN
expression. In order to use it in later JOINs, I simply
need to wrap it in brackets. Now, I also want to relate C
to B. Normally, I’d do this using the same syntax.

B INNER JOIN C ON C.bID = B.bID

In this case, however, I need to combine this
statement with the previous JOIN statement. I need
to substitute the “C” in “JOIN C ON” with the
expression previously created and wrap the
replacement in brackets.

B INNER JOIN (C INNER JOIN D ON C.dID = D.dID)
 ON C.bID = B.bID

I’m one step closer to my final JOIN statement.

Figure 9. Multiple
joined tables.

16 www.smartaccessnewsletter.comSmart Access August 2002

Now, I need to join A and B. This would normally be
done using the statement:

A INNER JOIN B ON A.aID = B.aID

Knowing this, I simply substitute my last JOIN
statement for “B” and voilà!—I have a nested JOIN.

A INNER JOIN
 (B INNER JOIN
 (C INNER JOIN D ON C.dID = D.dID)
 ON C.bID = B.bID
) ON A.aID = B.aID

Extending JOINs
Now that you know the syntax for creating JOINs, you
can put this syntax to use. However, don’t feel that you
should be limited to JOINs where one field in the match
criteria is always exactly equal to the other field. The
June 1997 installment of Working SQL (available online
to paid subscribers in the “View Past Issues” area of the
Smart Access Web site) contains some very interesting
JOIN ideas. Peter Vogel takes you through unequal
JOINs using greater-than comparisons. This is just one
way you can put JOINs to work.

Happy JOINing. ▲

ALLJOIN.ZIP at www.smartaccessnewsletter.com

Russell Sinclair is an MSCD and is the owner of Synthesystems, a

technology consulting firm specializing in Visual Basic, SQL Server, and

Microsoft Access development. He’s the author of From Access to SQL

Server, an Access developer’s guide to migrating to SQL Server; the senior

programmer with Questica, Inc., a company specializing in software for

custom-design manufacturers; and a Smart Access Contributing Editor.

russell@synthesystems.com.

JOIN Properties Dialogs
Depending on whether you’re working with a Jet or SQL

database, Access will show you one of two dialogs for JOIN

properties if you right-click a JOIN line and choose Properties

from the context menu. In Access, the dialog gives you a

numbered option at the bottom of the screen. In this case,

option 1 will create an INNER JOIN, 2 a LEFT JOIN, and 3 a

RIGHT JOIN.

In the SQL Server designers, you have two check boxes

for the Include Rows option. Leaving both check boxes blank

will set the JOIN to an INNER JOIN; selecting the upper check

box will specify a LEFT JOIN; selecting the lower box will

specify a RIGHT JOIN; and selecting them both will result in

a FULL JOIN.

