
1
0

Smart Access March
2003

www.vb123.com/kb

W

Choosing Options
Peter Vogel

Smart Access

22000000 22000022

Access provides three different ways for users to select
among multiple choices: check boxes, option buttons, and
toggles— and then there are option groups. Peter Vogel looks
at what you can (and can’t) do with these tools.

ORKING with my clients, I’ve occasionally
wandered into “user interface wars.” In these UI
conflicts, different users are following different

conventions for implementing their forms. In many cases,
the user is the primary casualty, especially when the
various controls are used inappropriately. One primary
area of conflict and unfortunate choices is that of the
three “choice controls”: option buttons, check boxes, and
toggle buttons.

All three of the choice controls allow the user to
select among choices (see Figure 1). That doesn’t stop
developers from using other tools to select among choices,
as I’ll mention later. However, option buttons, check
boxes, and toggle buttons have the advantage of being
instantly recognized by the experienced Windows user as
indicating a set of choices.

When should you use each control? The simplest
answer is to use option buttons when the user must select
one choice among many, and check boxes when the user
can select many choices. While an option button can be
used by itself (indicating that the user is either accepting
or rejecting an option), a check box is a better choice for
this kind of yes/no selection. Option buttons are more
useful when used in an option group, which ensures that
only one button in the group will be selected.

Check boxes can also be put in an option group,
which will also ensure that the user can only check one
box—but this contradicts the standard use of a check box.
If your user is allowed only one selection, use option
buttons. If you want to enclose a set of check boxes in a
box on the screen to distinguish them visually from the
rest of the form, use a rectangle, which won’t force the
user to select only one choice.

Toggle buttons
So where do toggle buttons fit in? My short answer is,

Figure 1. Option
buttons, check
boxes, and toggle
buttons.

“Mostly, nowhere.” Toggle buttons have the unfortunate
feature of looking like a command button. It’s not until
the user clicks a toggle button and it stays down that they
discover that it isn’t really a command button. Where a
toggle button is used in a group, it’s more obvious to the
user that the button is not being used to make something
happen but, instead, to choose among options. Figure 2,
demonstrates this visual ambiguity. On the left, I have a
single button—is it a toggle or a command button? Just
looking at them it’s hard to tell the difference. On the
right, I have a group of toggle buttons, which the user is
more likely to read as “a set of toggle buttons,” especially
because some are in the selected state.

The toggle button tends to be a niche solution,
applying only in a few specialized cases. For instance, the
overlap in appearance between command and toggle
buttons supports using the toggle button for a special
kind of selection: When selecting an option that causes
something to change on the screen, a toggle button
may be your best choice. For instance, a user interface
design that I saw implemented by Servant Systems
(www.servantsystems.com) used toggle buttons this way.
A set of toggle buttons in an option group down the left-
hand side of the screen allowed the user to select between
different functions in the system. As each toggle was
clicked, a different form was loaded into the subform
control on the right-hand side of the screen. It was
obvious to the users that they were choosing among
options, and just as obvious that something significant
was going to happen when they did.

Graphically, the toggle button offers some benefits
over option buttons and check boxes. You can, for
instance, put an image on a toggle button and Access will
automatically “dither” the image when the toggle button
is selected. If this graphical feature is important to you, a
toggle button is your best choice. Since toggle buttons can
be sized and a check box can’t, you can use toggle buttons
to make a stronger visual statement than is possible with
the other two controls. Obviously, toggle buttons can be
made larger than check boxes or option buttons can. Less
obviously, toggle buttons can also be of different sizes to

Figure 2. Toggle
buttons and
command buttons.

gaz
Typewritten text
Downloads www.vb123.com.au 



www.vb123.com/kb Smart Access March
2003

11

indicate relative importance.

Alternatives
However, none of the choice controls can be databound in
the same way that, for instance, a list box can. You can
bind which field is updated by the control, but you can’t
generate the list of choices by databinding to a table. If
you want to generate your options at runtime based on
the data in your table, you’re going to be forced to write
code that either:

• puts your form in design mode while you add
new controls; or

• makes visible a set of invisible controls added at
design time.

Both choices will create numerous problems in laying
out the controls on the page without overlaying other
controls. If the controls are in an option group, you’ll also
have to resize the group. Where you want to use table-
driven data, your best choice is a list box or (where screen
real estate is limited or the list is long) a combo box.

This limits the choice controls to selecting among
options that are constrained by the system’s code and
architecture, rather than the current state of the data. For
instance, if you’re allowing the user to choose between
landscape and portrait formats when printing, an option
group is your best choice. It’s difficult to imagine more
ways to print on a piece of paper. However, just because
you currently only provide four different backgrounds for
a report, it doesn’t mean that you should use an option
group to let users select among them. Unless there’s some

physical reason why more backgrounds can’t be added,
I’d put the choices in a table and allow the user to select
from a list box.

Tree views are becoming more popular as a way of
selecting among choices. However, the tree view merely
provides a way of organizing multiple groups of choices
in an expanding and collapsing framework. Most users are
still unfamiliar with using tree views in this way, so you
shouldn’t rush to this solution just because your favorite
development tool uses it. Where you have what would be
an overwhelming number of choices, a set of tab controls
is a better way to organize the options for your users.

These guidelines should allow you to recognize when
you should use a choice control and when to use them
most effectively. In addition to saving you from getting
involved in the crossfire of a UI war, you’ll also be
supporting your users’ expectations of what these
controls will do.▲

Peter Vogel (MBA, MCSD) is the editor of Smart Access. He’s a principal
in PH&V Information Services, which specializes in the design and
development for systems that use Microsoft tools. Peter has
designed, built, and installed intranet and component-based systems
for Bayer
AG, Exxon, Christie Digital, and the Canadian Imperial Bank of
Commerce. He also wrote The Visual Basic Object and Component
Handbook
(Prentice Hall, currently being revised for .NET). In addition to teaching
for Learning Tree International, Peter wrote its Web application
development, ASP.NET, and technical writing courses. His articles have
appeared in every majormagazine devoted to VB-based development,
can be found in the Microsoft Developer Network libraries, and are
included in Visual Studio .NET. Peter also presents at conferences
aroundthe world.


