
6 www.pinnaclepublishing.comSmart Access April 2006

Smart Access

Flexible Normalization and
Denormalization: Case 2
Helen Feddema

Helen Feddema approaches the same problem as Garry, but
this time manages her data to provide the users with the
output that met their needs.

A reader asked me how he could convert a table
with more than 100 questionnaire fields to a more
manageable format, with the fields converted to

records in a table to make it easier to tabulate the data.
Effectively, this is the reverse of Garry’s problem where
he converted multiple records into one: I’m converting a
single record into multiple records. To make matters more
interesting, my reader wanted to be able to save each
survey’s results in a separate table, which forces me to
re-create the table and query with each processing run.

In the Helen.mdb file that comes with this article,
you’ll find the tblSurvey table (part of which is shown in
Figure 1) that has the raw data from the questionnaires. It
has 44 fields (cut down from the original table, which had
more than 100 fields). There’s a Text field, ID, which is the
key field, and the other fields are either Boolean or Text,
with the Text fields taking a numeric value from 1 to 5.

To switch the fields to records, I first created a table
(with the prefix zstbl to indicate that it’s a system table)
with just three fields: SurveyID, a Long Integer field
indexed Yes (Duplicates OK), Question and Answer

Public Function CreateResultsTable()

On Error Resume Next

 Dim fld As DAO.Field
 Dim flds As DAO.Fields
 Dim rstSource As DAO.Recordset
 Dim rstTarget As DAO.Recordset
 Dim strPrompt As String
 Dim strResultsTable As String
 Dim strSourceTable As String
 Dim strTableTemplate As String
 Dim strTitle As String
 Dim strReport As String
 Dim strQuery As String
 Dim strSQL As String
 Dim lngCount As Long
 Dim strCurrentDate As String
 Dim intResult As Integer
 Dim rpt As Access.Report

The next step is to delete the existing table for this
survey (if it exists) and re-create it, ready to accept the
new data (the surveys were generated each day so I used
the current date to name each version of the table):

 strTableTemplate = "zstblSurveyResults"
 strCurrentDate = Format(Date, "dd-mmm-yyyy")
 strResultsTable = "tblSurveyResults_" & _
 strCurrentDate
 DoCmd.DeleteObject objecttype:=acTable, _
 objectname:=strResultsTable

On Error GoTo ErrorHandler

 'Make copy of table template
 DoCmd.CopyObject newname:=strResultsTable, _

Figure 1. The table with raw survey data in numerous fields.

Figure 2. A report
based on a totals
query giving the
number of each
answer for each
question.

(both text fields). This table is copied
to create a results table that’s filled
from code.

The CreateResultsTable function
fills a results table with records
containing field names and values
from the original tblSurvey and
creates a totals query based on it
(qtotAnswers) that totals the number
of Yes, No, and 1 through 5 answers
for each question. For convenience,
the function can be run from the
mcrCreateResultsTable macro, or (for
consistency with Garry’s database)
the frmCreateResultsTable form. This
query is the record source for a
simple report, which is shown in
Figure 2.

I begin by defining the variables
that I’ll be needing:

20002000 20022002 20032003

gaz
Typewritten text
Downloads
www.vb123.com.au

www.pinnaclepublishing.com 7Smart Access April 2006

 sourceobjecttype:=acTable, _
 sourceobjectname:=strTableTemplate

Now that the table is created, I can fill it with data. As
in Garry’s example, I read each record and then process
each field creating a record as I go:

 strSourceTable = "tblSurvey"
 Set dbs = CurrentDb
 Set rstSource = dbs.OpenRecordset(strSourceTable)
 Set rstTarget = dbs.OpenRecordset(strResultsTable)
 Do While Not rstSource.EOF
 Set flds = rstSource.Fields
 For Each fld In flds
 rstTarget.AddNew
 If fld.Name <> "ID" Then
 rstTarget![SurveyID] = rstSource![ID]
 rstTarget![Question] = fld.Name
 If fld.Type = dbBoolean Then
 rstTarget![Answer] = _
 IIf(fld.Value = True, "Yes", "No")
 Else
 rstTarget![Answer] = fld.Value
 End If
 rstTarget.Update
 End If
 Next fld
 rstSource.MoveNext
 Loop
 rstSource.Close

Reporting on the data
However, the table was only part of the solution. I also
needed to create a query that would total the results and
serve as the basis for a report. I first deleted any existing
copy of the query and then generated a new one:

 'Delete old totals query
 strQuery = "qtotAnswers"
 DoCmd.DeleteObject objecttype:=acQuery, _
 objectname:=strQuery

 Set dbs = CurrentDb
 strSQL = "SELECT [" & strResultsTable _
 & "].[Question], " _
 & "Sum(IIf([Answer]='Yes',1,0)) AS YesAnswer, " _
 & "Sum(IIf([Answer]='No',1,0)) AS NoAnswer, " _
 & "Sum(IIf([Answer]='1',1,0)) AS 1Answer, " _
 & "Sum(IIf([Answer]='2',1,0)) AS 2Answer, " _
 & "Sum(IIf([Answer]='3',1,0)) AS 3Answer, " _
 & "Sum(IIf([Answer]='4',1,0)) AS 4Answer, " _
 & "Sum(IIf([Answer]='5',1,0)) AS 5Answer " _
 & "FROM [" & strResultsTable & _
 "] GROUP BY [" & strResultsTable & "].[Question];"
 Debug.Print "SQL for " & strQuery & ": " & strSQL
 lngCount = CreateAndTestQuery(strQuery, strSQL)
 Debug.Print "No. of records: " & lngCount
 If lngCount = 0 Then
 strPrompt = "No records found; canceling"
 strTitle = "Canceling"
 MsgBox strPrompt, vbOKOnly, strTitle
 GoTo ErrorHandlerExit
 End If

The final step is to update the report with the current
date (stored in the Tag property for display in the txtTitle
textbox) and ask the user if they want to view it:

 strReport = "rptAnswers"
 DoCmd.OpenReport reportname:=strReport, _
 view:=acViewDesign, windowmode:=acHidden
 Set rpt = Reports(strReport)
 rpt.Tag = strCurrentDate

 strTitle = "Finished"
 strPrompt = strResultsTable & _
 " results table created; open report?"
 intResult = MsgBox(strPrompt, vbYesNo, strTitle)
 If intResult = vbYes Then
 DoCmd.OpenReport reportname:=strReport, _
 view:=acViewPreview
 Else
 DoCmd.Close objecttype:=acReport, _

 objectname:=strReport
 End If

Finally, exit the function, with an error handler to take
care of any errors:

ErrorHandlerExit:
 Exit Function

ErrorHandler:
 MsgBox "Error No: " & Err.Number & _
 "; Description: " & Err.Description
 Resume ErrorHandlerExit

End Function

The CreateAndTestQuery function listed below is
handy for creating (and re-creating, as needed) a query in
code. I use it to re-create the totals query qtotAnswers,
based on the newly created results table (see Figure 2).

Public Function CreateAndTestQuery(_
 strTestQuery As String, strTestSQL As String)
 As Long

On Error Resume Next

 Set dbs = CurrentDb
 dbs.QueryDefs.Delete strTestQuery

On Error GoTo ErrorHandler

 Set qdf = dbs.CreateQueryDef(strTestQuery, _
 strTestSQL)

 'Test whether there are any records
 Set rst = dbs.OpenRecordset(strTestQuery)
 With rst
 .MoveFirst
 .MoveLast
 CreateAndTestQuery = .RecordCount
 End With

ErrorHandlerExit:
 Exit Function

ErrorHandler:
 If Err.Number = 3021 Then
 CreateAndTestQuery = 0
 Resume ErrorHandlerExit
 Else
 MsgBox "Error No: " & Err.Number & _
 "; Description: " & Err.Description
 Resume ErrorHandlerExit
 End If

End Function

You can find a sample database with all of the code in
the accompanying download file. In addition to the
Microsoft DAO 3.6 Object Library, my sample database
also uses the Scripting Runtime Library. ▲

604FEDDEMA.ZIP at www.pinnaclepublishing.com

Helen Feddema is an independent developer and writer on Access and

Office topics who lives in the middle of New York state. Her latest book

is Expert One-on-One Microsoft Access Application Development (Wiley,

ISBN 0764559044).

